Research Objects can be used to capture academic outputs in a wide range of scopes, from detailed traces of software execution to consortium-wide results from a 5 year research project.

Research Object extensions and serialization formats can be applied together with domain-specific annotations to form a specific type of Research Object with a particular scope.

Profiles help define the shape and form of a domain- or application-specific research object. Loosely, a profile defines a format (e.g. Research Object Bundle), an expectation of what kind of resources should be expected, and link to any specific vocabularies or further specifications that should be used in its annotations. In a way, a profile defines the general purpose of that type of Research Objects, and documents what assumptions a consumer could rely on when processing such Research Objects.

A profile may mandate a minimal information model checklist to formally specify its requirements, although the profile may just be a text document for a human reader.

Below is a list of known Research Object Profiles – feel free to suggest changes to this list.

Scientific Workflows

Scientific workflows are computational experiments that are composed of a set of coordinated computational tasks, each of which takes some data inputs and produces some data outputs, which are then consumed by subsequent tasks according to the workflow definition, i.e. the experiment protocol definition. Scientific workflows provide the means for automating computational scientific experiments, enabled by established workflow execution engines, like Apache Taverna, Kepler, VisTrails or Galaxy.

A workflow-centric research object contain the application-specific workflow definition, annotated with wfdesc, and combined with a PROV-based execution trace of one or more workflow runs, including inputs and outputs. As an example of an application-specific profile, see Apache Taverna’s data bundle.

A slightly different workflow research object is to capture the recipe for execution, what we can call a plan or prospective provenance. In the Common Workflow Language Viewer, workflow definitions can be downloaded as a Research Object Bundle to capture runtime requirements of a CWL workflow, in addition to provenance of how the definition itself was created, examining the corresponding GitHub log.

ISA model

The ISA model is commonly used in systems biology, life sciences, environmental and biomedical domains to structure research outputs. ISA defines a top-level investigation, consisting of studies, which contain several assays (experiment or test) that produces data files. In SEEK for Science, used by the FAIRDOM data management project, a complete investigation can be downloaded as a Research Object Bundle, which is structured according to the ISA model to include all contained resources and their annotations. These research objects corresponds to temporal snapshots of the whole investigation, which can be assigned DOIs (e.g.).

Digital Preservation

In digital libraries, preservation of source artifacts commonly use the BagIt format for archive serialization, capturing digital resources like audio recordings, document scans and their transcriptions, provenance and annotations. The Research Object BagIt archive is a profile for describing a BagIt archive and its content as a Research Object to structure the metadata and relate the captured resources, used by the NIH-funded Big Data for Discovery Science (BDDS) project to capture Big Data bags (BDBag) of large complex datasets from genomics workflows. BDDS also developed the the bdbag utility and Python library to create/inspect/manipulate such research objects.

Simulation Experiments

A simulation study usually consists of multiple modules. A computational model describes a real-world system, a simulation description defines the parametrisation, and some documentation explains how to use and run the study. The experiment can then be simulated in silico to study the behaviour under different conditions. This approach helps understanding the encoded system and allows for making predictions about what will happen in the real system without spending money and time for wet lab experiments.

A simulation object (which is a research object encoding for a simulation experiment) needs to contain all files necessary to reproduce the results of a certain simulation experiment. It must be annotated with the information about the creators and authors of the files/modules shipped with the study. Moreover, it should make use of standard formats (such as SBML, CellML, SED-ML) as far as possible. See also COMBINE Archive.

Computational Jobs

The STELAR project uses research objects as part of its computational job management, by capturing analysis code in a Snapshot Research Object, and submitting a Job Research Objects that aggregate all of the content required to execute the analysis code, e.g. the Snapshot Research Object and input data files. Annotations included metadata required for execution: command line parameters, environment variables and the necessary computational resources (e.g. CPU and memory). Results are returned as Execution Research Objects that aggregates the Job Research Object along with the outputs of the process: output files, standard input, standard output and standard error.

Health Informatics

For sharing Public Health datasets within the Farr institute of Health Informatics research, the Farr Commons defines a Research Object profile with a series of requirements on identifiers, versioning and licensing of datasets. Availability aspects include privacy regulations, and domain-specific annotations include cohort and clinical codes.